基于sk_learn的k近邻算法实现-mnist手写数字识别且要求97%以上精确率

1. 导入需要的库

from sklearn.datasets import fetch_openml
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

2. 设置随机种子,以获得可复现的结果。

np.random.seed(42)

3. 获取mnist数据集,并将数据集标签 由字符型转换为整数型

1 np.random.seed(42)
2 mnist = fetch_openml("mnist_784", version = 1, as_frame=False)
3 X, y = mnist['data'], mnist['target']
4 y = y.astype(np.uint8)

4. 划分训练集和测试集

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

5. 训练模型并测试

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_train) y_test_pred = knn_clf.predict(X_test)
print(accuracy_score(y_test, y_test_pred))

如图我们得到了模型的准确率 0.9688

基于sk_learn的k近邻算法实现-mnist手写数字识别且要求97%以上精确率

6. 训练模型中的超参数weights(默认值为'uniform')和n_neighbors(默认值为5)。由于超参数的连续性,所以n_neighbors的备选值可以为 3, 4,  6文章地址https://www.yii666.com/article/756324.html网址:yii666.com

from sklearn.datasets import fetch_openml
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score np.random.seed(42)
mnist = fetch_openml("mnist_784", version = 1, as_frame=False)
X, y = mnist['data'], mnist['target']
y = y.astype(np.uint8) X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
param_grid = [{'weights': ["uniform", "distance"], 'n_neighbors': [3, 4, 6]}] knn_clf = KNeighborsClassifier()
grid_search = GridSearchCV(knn_clf, param_grid, cv=5, verbose=3)
grid_search.fit(X_train, y_train)
y_pred = grid_search.predict(X_test)
print(accuracy_score(y_test, y_pred))

如图所示,在测试集上得到的准确率达到97.14%文章来源地址https://www.yii666.com/article/756324.html

基于sk_learn的k近邻算法实现-mnist手写数字识别且要求97%以上精确率

通过如下命令可以获得选取的最合适的超参数以及在验证集上达到的最好结果网址:yii666.com<

基于sk_learn的k近邻算法实现-mnist手写数字识别且要求97%以上精确率

基于sk_learn的k近邻算法实现-mnist手写数字识别且要求97%以上精确率文章来源地址:https://www.yii666.com/article/756324.html

版权声明:本文内容来源于网络,版权归原作者所有,此博客不拥有其著作权,亦不承担相应法律责任。文本页已经标记具体来源原文地址,请点击原文查看来源网址,站内文章以及资源内容站长不承诺其正确性,如侵犯了您的权益,请联系站长如有侵权请联系站长,将立刻删除

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信图片_20190322181744_03.jpg

微信扫一扫打赏

请作者喝杯咖啡吧~

支付宝扫一扫领取红包,优惠每天领

二维码1

zhifubaohongbao.png

二维码2

zhifubaohongbao2.png